第六届金盾信安Reverse题解

第六届金盾信安

Reverse

babyre

使用工具

DIE
IDApro

分析过程

image-20241130193923159

DIE查壳发现是PE32文件,IDApro32分析。

image-20241130194039044

v26保存前十六个字符,v24保存后十六个字符。

sub_401130函数v26的字符赋值给v21,是大端序复制。

image-20241130194150897

sub_401100调试检测

image-20241130194209563

image-20241130194336258

直接NOP掉。

在 sub_401100处下断点运行后观察v20的值

image-20241130194432498

可以发现真正的密钥是这些。这4个就是TEA的密钥。

在 (loc_4011A0)(v21, v20); 处下断点,F7跟进

image-20241130194459046

遇到这样的提示就选择 YES

分析汇编

image-20241130194514486

image-20241130194552642

image-20241130194603048

就是一个标准的TEA加密。

sub_2812F0后十六个字符就是凯撒加密,偏移为3.

image-20241130194753367

image-20241130194804135

对v6进行解密

解密

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
void decrypt(uint32_t *v, uint32_t *k)
{
uint32_t v0 = v[0], v1 = v[1], sum = 0xC6EF3720, i; /* set up */
uint32_t delta = 0x9e3779b9; /* a key schedule constant */
uint32_t k0 = k[0], k1 = k[1], k2 = k[2], k3 = k[3]; /* cache key */
for (i = 0; i < 32; i++)
{ /* basic cycle start */
v1 -= ((v0 << 4) + k2) ^ (v0 + sum) ^ ((v0 >> 5) + k3);
v0 -= ((v1 << 4) + k0) ^ (v1 + sum) ^ ((v1 >> 5) + k1);
sum -= delta;
} /* end cycle */
v[0] = v0;
v[1] = v1;
}

int main()
{
uint32_t plaintext[]={0x369A1583, 0x009A9E6D, 0xBE761C60, 0x3ED644A0, 0x64716A51, 0x6C49686C, 0x546C4F64, 0x6C21217D};
uint32_t key[] = { 0x1266,0x3404,0x562A,0x78C2 };
for (size_t i = 0; i < 4; i+=2)
{
decrypt(&plaintext[i],key);
}


for (size_t i = 0; i < 8; i++)
{
printf("%08x",plaintext[i]);

}

// 666c61677b5a6875616e674269576f5264716a516c49686c546c4f646c21217d
// flag{ZhuangBiWoRdqjQlIhlTlOdl!!}

return 0;
}

在对后十六字节进行凯撒解密

1
Shift = 3: angNiFeiQiLai!!}

flag就是

1
flag{ZhuangBiWoRangNiFeiQiLai!!}

easyre

分析工具

IDApro

DIE

分析过程

image-20241130191227198

DIE查壳发现是PE32文件。

image-20241130191424994

在Main函数发现两个无用的跳转,直接NOP掉,在函数PUSH处按P识别为函数。

image-20241130191444835

分析伪代码

loc_401410处有花指令

image-20241130191507691

按U在把第一个字节NOP掉

image-20241130191542668

发现是RC4密钥流的生成,同时也发现sub_401100函数是调试检测。

image-20241130191555466

image-20241130191706009

直接在汇编中把这个调用调试检测的函数给NOP掉。

sub_4014D0函数

image-20241130191820294

RC4加密实现,标准的。sub_401100同样是调试检测,直接NOP。

sub_401130函数

image-20241130191909610

通过观察byte_404060异或后的值发现就是标准BASE64的码表。

sub_401640函数

image-20241130191957005

直接NOP,修改一下函数结束地址。

image-20241130192039551

发现是验证函数。

做完以上操作后要应用修改,在Edit->patch program处。

解密

结合以上分析,程序加密逻辑为RC4加密–>Base64加密。RC4加密密钥疑似为

image-20241130192134326

但实际测试下来发现不是,这里不在追踪密钥,直接动调获取到生成S盒的数据。

image-20241130192710554

这些就是S盒子,一共256个。

image-20241130193244015

标准Base64码表。

image-20241130193348210

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include <iostream>
#include <string.h>
#include <string.h>
#include <Windows.h>

using namespace std;


unsigned char aaaaa[266] = {
0x2D, 0x20, 0xAE, 0x56, 0x9B, 0x51, 0x12, 0x53, 0x16, 0x21, 0x25, 0x72, 0x91, 0xD5, 0x0A, 0x4F,
0xF7, 0x87, 0xA2, 0x8A, 0x93, 0x95, 0xC8, 0x61, 0x1D, 0x30, 0xDB, 0x66, 0x84, 0x23, 0x49, 0x9F,
0x62, 0x35, 0x08, 0x46, 0x0E, 0x6F, 0xD7, 0x26, 0x22, 0x82, 0xF0, 0xF1, 0xC1, 0xE7, 0x65, 0x18,
0x6B, 0x01, 0x0F, 0x8D, 0xBF, 0x43, 0x79, 0x2C, 0xB8, 0x68, 0xD9, 0x28, 0xB3, 0xD4, 0x94, 0x34,
0xE3, 0x1B, 0x5C, 0x4D, 0xAC, 0x3D, 0xAA, 0xB2, 0x55, 0xB7, 0xF8, 0x81, 0x92, 0x41, 0x89, 0x47,
0xA1, 0x27, 0x0B, 0x5A, 0x58, 0x09, 0xCC, 0xE6, 0x5B, 0x8B, 0xCD, 0xD8, 0x76, 0x50, 0xB1, 0x1A,
0x02, 0x80, 0xEA, 0x5E, 0xE5, 0xBC, 0x6A, 0x03, 0xE4, 0xE2, 0x19, 0xC6, 0xAF, 0x7E, 0xA5, 0xA4,
0x36, 0x73, 0xC7, 0x14, 0xEF, 0x77, 0x32, 0xA0, 0x1E, 0xD3, 0xF2, 0xEE, 0x24, 0x75, 0x3B, 0xB6,
0xAB, 0x4B, 0x3A, 0x85, 0xFC, 0xBD, 0xFB, 0xB5, 0xD0, 0x15, 0x45, 0x2E, 0x97, 0xCF, 0x4E, 0xCA,
0xC3, 0x86, 0xC5, 0x07, 0x54, 0x60, 0xBE, 0xD6, 0x39, 0x40, 0x05, 0x4C, 0x2A, 0x69, 0xC2, 0xF4,
0x70, 0x57, 0x99, 0x29, 0xD2, 0x88, 0x7B, 0x11, 0x7D, 0x3C, 0xCE, 0xDD, 0x42, 0x71, 0x1F, 0x8F,
0x06, 0x3F, 0xA7, 0x48, 0xDE, 0xE1, 0xE9, 0x0C, 0xFD, 0xEC, 0x9E, 0x00, 0xFA, 0x98, 0xAD, 0x2F,
0xA9, 0xDA, 0xED, 0xC9, 0x0D, 0xB4, 0xDC, 0x3E, 0x10, 0xFE, 0xDF, 0x78, 0x7C, 0x63, 0x90, 0x5D,
0xE8, 0xB9, 0x9C, 0x2B, 0x67, 0xFF, 0xA6, 0x74, 0xBA, 0x1C, 0xC0, 0x38, 0x83, 0x44, 0x37, 0xBB,
0x9A, 0xF5, 0x59, 0x8E, 0x9D, 0x33, 0x96, 0x7A, 0xEB, 0xF9, 0x31, 0xF3, 0xCB, 0xA3, 0x6D, 0xB0,
0x6E, 0x52, 0x13, 0x4A, 0xA8, 0x64, 0xE0, 0x04, 0x8C, 0xC4, 0x7F, 0x6C, 0x5F, 0xD1, 0x17, 0xF6,
0x3C, 0xA6, 0x3B, 0x27, 0xFE, 0xFF, 0xFF, 0xFF, 0xE8, 0xF7
};

void swap(unsigned char* a, unsigned char* b) {
unsigned char temp = *a;
*a = *b;
*b = temp;
}

void rc4_key_setup(unsigned char* key, int key_length, unsigned char S[256]) {
unsigned char T[256];
int i, j;

for (i = 0; i < 256; i++) {
S[i] = i;
T[i] = key[i % key_length];
}

j = 0;
for (i = 0; i < 256; i++) {
j = (j + S[i] + T[i]) % 256;
swap(&S[i], &S[j]);
}
}

void rc4_crypt(unsigned char* input_data, int input_length, unsigned char* output_data, unsigned char S[256]) {
int i, j, k;
i = j = 0;

for (k = 0; k < input_length; k++) {
i = (i + 1) % 256;
j = (j + S[i]) % 256;
swap(&S[i], &S[j]);
int t = (S[i] + S[j]) % 256;
output_data[k] = input_data[k] ^ S[t];
}
}


int main()
{
unsigned char input_data[] = { 0x5c,0xf8,0x84,0xb8,0x2e,0xe9,0xbe,0xc9,0x3a,0x03,0xac,0xbb,0xb6,0x26,0xd9,0xea,0x87,0xec,0xf1,0x13,0x1a,0x4e,0x9f,0x03,0x2d,0xbe,0xa4,0x5d,0xa9,0x6c,0x98,0xb2,0xec,0xcb,0x94,0xf9,0xc6,0x9d,0xef,0xe3,0x51 };
unsigned char decrypted_data[sizeof(input_data)];

rc4_crypt(input_data, sizeof(input_data), decrypted_data, aaaaa);

for (int i = 0; i < sizeof(decrypted_data); i++) {
printf("%c", decrypted_data[i]);
}
return 0;
}
// flag{2aed4771-b75048e3-db87779b-a3811911}